Physiological Roles of an Acinetobacter -specific σ Factor

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Gram-negative pathogen Acinetobacter baumannii is considered an “urgent threat” to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF “SigAb;” however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA , and the uncharacterized small RNA, “ sabS .” However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, “ aabA ” and “ aabB ”, have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb , aabA , and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii .

Importance

Acinetobacter baumannii is a hospital-acquired pathogen, and many strains are resistant to multiple antibiotics. Understanding how A. baumannii senses and responds to stress may uncover novel routes to treat infections. Here, we examine how the Acinetobacter -specific transcription factor, SigAb, mitigates stress. We find that SigAb directly regulates only a small number of genes, but indirectly controls hundreds of genes that have substantial impacts on cell physiology. We show that SigAb is required for maximal growth, even during optimal conditions, and is acutely required during growth in the presence of elevated copper. Given that copper toxicity plays roles in pathogenesis and on copper-containing surfaces in hospitals, we speculate that SigAb function may be important in clinically-relevant contexts.

Article activity feed