Humans forage for reward in reinforcement learning tasks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

How do we make good decisions in uncertain environments? In psychology and neuroscience, the classic answer is that we calculate the value of each option and then compare the values to choose the most rewarding, modulo some exploratory noise. An ethologist, conversely, would argue that we commit to one option until its value drops below a threshold, at which point we start exploring other options. In order to determine which view better describes human decision-making, we developed a novel, foraging-inspired sequential decision-making model and used it to ask whether humans compare to threshold (“Forage”) or compare alternatives (“Reinforcement-Learn” [RL]). We found that the foraging model was a better fit for participant behavior, better predicted the participants’ tendency to repeat choices, and predicted the existence of held-out participants with a pattern of choice that was almost impossible under RL. Together, these results suggest that humans use foraging computations, rather than RL, even in classic reinforcement learning tasks.

Article activity feed