Unveiling Clonal Cell Fate and Differentiation Dynamics: A Hybrid NeuralODE-Gillespie Approach

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Recent lineage tracing single-cell techniques (LT-scSeq), e.g., the Lineage And RNA RecoverY (LARRY) barcoding system, have enabled clonally resolved interpretation of differentiation trajectories. However, the heterogeneity of clone-specific kinetics remains understudied, both quantitatively and in terms of interpretability, thus limiting the power of bar-coding systems to unravel how heterogeneous stem cell clones drive overall cell population dynamics. Here, we present CLADES, a NeuralODE-based framework to faithfully estimate clone-specific kinetics of cell states from newly generated and publicly available human cord blood LARRY LT-scSeq data. By incorporating a stochastic simulation algorithm (SSA) and differential expression gene (DEGs) analysis, CLADES yields cell division dynamics across differentiation timecourses and fate bias predictions for the early progenitor cells. Moreover, clone-level quantitative behaviours can be grouped into characteristic types by pooling individual clones into meta-clones. By benchmarking with CoSpar, we found that CLADES improves fate bias prediction accuracy at the meta-clone level. In conclusion, we report a broadly applicable approach to robustly quantify differentiation kinetics using meta-clones while providing valuable insights into the fate bias of cellular populations for any organ system maintained by a pool of heterogeneous stem and progenitor cells.

Article activity feed