Inhibitory neurons marked by a connectivity molecule regulate memory precision

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.

Article activity feed