Highly Multiplexed Spatial Transcriptomics in Bacteria

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.

Article activity feed