Gliflozins, sucrose and flavonoids are allosteric activators of lecithin:cholesterol acyltransferase

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Lecithin:cholesterol acyltransferase (LCAT) serves as a pivotal enzyme in preserving cholesterol homeostasis via reverse cholesterol transport, a process closely associated with the onset of atherosclerosis. Impaired LCAT function can lead to severe LCAT deficiency disorders for which no pharmacological treatment exists. LCAT-based therapies, such as small molecule positive allosteric modulators (PAMs), against LCAT deficiencies and atherosclerosis hold promise, although their efficacy against atherosclerosis remains challenging. Herein we utilized a quantitative in silico metric to predict the activity of novel PAMs and tested their potencies with in vitro enzymatic assays. As predicted, sodium-glucose cotransporter 2 (SGLT2) inhibitors (gliflozins), sucrose and flavonoids activate LCAT. This has intriguing implications for the mechanism of action of gliflozins, which are commonly used in the treatment of type 2 diabetes, and for the endogenous activation of LCAT. Our results underscore the potential of molecular dynamics simulations in rational drug design.

Article activity feed