Integration of Kinetic Data into Affinity-Driven Models for Improved T Cell-Antigen Specificity Prediction

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions that result in T cell activation are complex and have been distinguished by their equilibrium affinity and kinetic profiles. While prior affinity-based models can successfully predict meaningful TCR-pMHC interactions in many cases, they occasionally fail at identifying TCR-pMHC interactions with low binding affinity. This study analyzes TCR-pMHC systems for which empirical kinetic and affinity data exist and prior affinity-based predictions fail. We identify a criteria for TCR-pMHC systems with available kinetic information where the introduction of a correction factor improves energybased model predictions. This kinetic correction factor offers a means to refine existing models with additional data and offers molecular insights to help reconcile previously conflicting reports concerning the influence of TCR-pMHC binding kinetics and affinity on T cell activation.

Article activity feed