PCM1 conveys centrosome asymmetry to polarized endosome dynamics in regulating daughter cell fate

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Vertebrate radial glia progenitors (RGPs), the principal neural stem cells, balance self-renewal and differentiation through asymmetric cell division (ACD), during which unequal inheritance of centrosomes is observed. Mechanistically, how centrosome asymmetry leads to distinct daughter cell fate remains largely unknown. Here we find that the centrosome protein Pericentriolar Material 1 (Pcm1), asymmetrically distributed at the centrosomes, regulates polarized endosome dynamics and RGP fate. In vivo time-lapse imaging and nanoscale-resolution expansion microscopy of zebrafish embryonic RGPs detect Pcm1 on Notch ligand-containing endosomes, in a complex with the polarity regulator Par-3 and dynein motor. Loss of pcm1 disrupts endosome dynamics, with clonal analysis uncovering increased neuronal production at the expense of progenitors. Pcm1 facilitates an exchange of Rab5b (early) for Rab11a (recycling) endosome markers and promotes the formation of Par-3 and dynein macromolecular complexes on recycling endosomes. Finally, in human-induced pluripotent stem cell-derived brain organoids, PCM1 shows asymmetry and co-localization with PARD3 and RAB11A in mitotic neural progenitors. Our data reveal a new mechanism by which centrosome asymmetry is conveyed by Pcm1 to polarize endosome dynamics and Notch signaling in regulating ACD and progenitor fate.

Article activity feed