Pathogenic LRRK2 mutations cause loss of primary cilia and Neurturin in striatal Parvalbumin interneurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Parkinson’s disease-associated, activating mutations in LRRK2 kinase block primary cilia formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here we show that Parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched protein, and their numbers decrease. In addition, glial cell line-derived neurotrophic factor-related Neurturin expression is significantly decreased. These experiments highlight the importance of Parvalbumin neurons in cilia-dependent, neuroprotective signaling pathways and show that LRRK2 activation decreases Neurturin production, resulting in less neuroprotection for dopamine neurons.

Summary

Parvalbumin interneurons in the dorsal striatum lose primary cilia in mice harboring Parkinson’s-associated, activating mutations in LRRK2 kinase, resulting in loss of Hedgehog signaling and decreased production of neuroprotective, Glial cell line-derived neurotrophic factor-related Neurturin to support dopamine neurons.

Article activity feed