Structural basis of differential gene expression at eQTLs loci from high-resolution ensemble models of 3D single-cell chromatin conformations
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Motivation
Techniques such as high-throughput chromosome conformation capture (Hi-C) have provided a wealth of information on nucleus organization and genome important for understanding gene expression regulation. Genome-Wide Association Studies have identified numerous loci associated with complex traits. Expression quantitative trait loci (eQTL) studies have further linked the genetic variants to alteration in expression levels of associated target genes across individuals. However, the functional roles of many eQTLs in noncoding regions remain unclear. Current joint analyses of Hi-C and eQTLs data lack advanced computational tools, limiting what can be learned from these data.
Results
We developed a computational method for simultaneous analysis of Hi-C and eQTL data, capable of identifying a small set of nonrandom interactions from all Hi-C interactions. Using these nonrandom interactions, we reconstructed large ensembles (×105) of high-resolution single-cell 3D chromatin conformations with thorough sampling, accurately replicating Hi-C measurements. Our results revealed many-body interactions in chromatin conformation at the single-cell level within eQTL loci, providing a detailed view of how 3D chromatin structures form the physical foundation for gene regulation, including how genetic variants of eQTLs affect the expression of associated eGenes. Furthermore, our method can deconvolve chromatin heterogeneity and investigate the spatial associations of eQTLs and eGenes at subpopulation level, revealing their regulatory impacts on gene expression. Together, ensemble modeling of thoroughly sampled single-cell chromatin conformations combined with eQTL data, helps decipher how 3D chromatin structures provide the physical basis for gene regulation, expression control, and aid in understanding the overall structure-function relationships of genome organization.
Availability and implementation
It is available at https://github.com/uic-liang-lab/3DChromFolding-eQTL-Loci.