Deciphering the Binding of 5’ Stem Loop RNA to the La Domain of Human LARP6

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

La-related protein 6 regulates the highly organized biosynthesis of type I procollagen polypeptides and affects proper assembly of procollagen peptides into heterotrimers of type I procollagen. LARP6-mediated regulation of collagen biosynthesis is mediated through interaction with the 5’ stem loop motif found in type I and III collagen mRNA. Recent studies highlight the involvement of HsLARP6 in fibroproliferative diseases and its potential as a target for therapeutic intervention. The intrinsic instability of the La domain of HsLARP6 hampers studies probing the molecular basis of biologically- and disease-relevant structure-function relationship, particularly when high concentrations are required. This work provides detailed procedures to produce milligram amounts of RNase-free and functional La domain of HsLARP6. Furthermore, we investigated the effect of the construct length as well as RNA binding on protein stability. N- and C-terminal extensions greatly impact stability based on interactions with the core domain and modulation of the pI. When in complex with its cognate 5’SL RNA, the La domain shows unprecedented stability compared to the aggregation-prone unbound state. The protein-RNA complex remains stable for at least 50x longer than the unbound state, under identical conditions, likely due to a global change in conformational plasticity upon RNA binding. These results provide a foundation for further studies of the molecular recognition of 5’SL by HsLARP6 as well as a platform for refining potential antifibrotic therapeutics.

Article activity feed