Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common type of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in layers I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit’s E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are “released” from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons “escape” their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain condition.

Author summary

While chronic pain affects roughly 20% of the US adult population [1], symptoms and presentations of the condition are highly variable across individuals and its causes remain largely unknown. A prevailing hypothesis for the cause of a type of chronic pain called allodynia is that the balance between excitatory and inhibitory signaling pathways between neuron populations in the spinal cord dorsal horn may be disrupted. To help better understand neural mechanisms underlying allodynia, we analyze biologically-motivated mathematical models of subcircuits of neuron populations that are part of the pain processing signaling pathway in the dorsal horn of the spinal cord. We use a novel sensitivity analysis approach to identify mechanisms of subcircuit dysregulation that may contribute to two different types of allodynia. The model results identify specific subcircuit components that are most likely to contribute to each type of allodynia. These mechanisms suggest targets for further experimental study, as well as for pharmacological intervention for better pain treatments.

Article activity feed