Cell type-specific roles of FOXP1 in the excitatory neuronal lineage during early neocortical murine development
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
FOXP1, a transcription factor enriched in the neocortex, is associated with autism spectrum disorders (ASD) and FOXP1 syndrome. Emx1 Cre/+ ;Foxp1 fl/fl conditional deletion ( Foxp1 cKO) in the mouse cortex leads to overall reduced cortex thickness, alterations in cortical lamination, and changes in the relative thickness of cortical layers. However, the developmental and cell type-specific mechanisms underlying these changes remained unclear. We find that Foxp1 deletion results in accelerated pseudo-age during early neurogenesis, increased cell cycle exit during late neurogenesis, altered gene expression and chromatin accessibility, and selective migration deficits in a subset of upper-layer neurons. These data explain the postnatal differences observed in cortical layers and relative cortical thickness. We also highlight genes regulated by FOXP1 and their enrichment with high-confidence ASD or synaptic genes. Together, these results underscore a network of neurodevelopmental disorder-related genes that may serve as potential modulatory targets for postnatal modification relevant to ASD and FOXP1 syndrome.