Characterization of β-Hydroxybutyrate as a Cell Autonomous Fuel for Active Excitatory and Inhibitory Neurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ketogenic diet is an effective treatment for drug-resistant epilepsy, but the therapeutic mechanisms are poorly understood. Although ketones are able to fuel the brain, it is not known whether ketones are directly metabolized by neurons on a time scale sufficiently rapid to fuel the bioenergetic demands of sustained synaptic transmission. Here, we show that nerve terminals can use the ketone β-hydroxybutyrate in a cell- autonomous fashion to support neurotransmission in both excitatory and inhibitory nerve terminals and that this flexibility relies on Ca 2+ dependent upregulation of mitochondrial metabolism. Using a genetically encoded ATP sensor, we show that inhibitory axons fueled by ketones sustain much higher ATP levels under steady state conditions than excitatory axons, but that the kinetics of ATP production following activity are slower when using ketones as fuel compared to lactate/pyruvate for both excitatory and inhibitory neurons.

Significance Statement

The ketogenic diet is a standard treatment for drug resistant epilepsy, but the mechanism of treatment efficacy is largely unknown. Changes to excitatory and inhibitory balance is one hypothesized mechanism. Here, we determine that ATP levels are differentially higher in inhibitory neurons compared to excitatory neurons, suggesting that greater mitochondrial ATP production in inhibitory neurons could be one mechanism mediating therapeutic benefit. Further, our studies of ketone metabolism by synaptic mitochondria should inform management of side effects and risks associated with ketogenic diet treatments. These results provide novel insights that clarify the role of ketones at the cellular level in ketogenic diet treatment for intractable epilepsy and inform the use of ketogenic diets for neurologic and psychiatric conditions more broadly.

Article activity feed