The 6-OHDA Parkinson’s Disease Mouse Model Shows Deficits in Sensory Behavior

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, leading to dopamine depletion in the striatum and the hallmark motor symptoms of the disease. However, non-motor deficits, particularly sensory symptoms, often precede motor manifestations, offering a potential early diagnostic window. The impact of non-motor deficits on sensation behavior and the underlying mechanisms remain poorly understood. In this study, we examined changes in tactile sensation within a parkinsonian state by employing a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) to deplete striatal DA. Leveraging the conserved mouse whisker system as a model for tactile-sensory stimulation, we conducted psychophysical experiments to assess sensory-driven behavioral performance during a tactile detection task in both the healthy and PD-like state. Our findings reveal a range of deficits across subjects following 6-OHDA lesion, including DA loss, motor asymmetry, weight loss, and varying levels of altered tactile sensation behavior. Behavioral changes ranged from no impairments in minor cases to isolated sensory-behavioral deficits in moderate cases and severe motor dysfunction in advanced stages. These results underscore the complex relationship between DA imbalance and sensory-motor processing, emphasizing the need for precise and multifaceted behavioral measurements to accurately capture the diverse manifestations of PD.

SIGNIFICANCE STATEMENT

This study explores sensory-motor aspects of Parkinson’s disease using a 6-OHDA mouse model. Leveraging the mouse whisker system, we reveal diverse deficits in tactile sensation behavior due to dopamine depletion. Our findings emphasize the importance of sensory assessments in understanding the diverse spectrum of PD symptoms.

Article activity feed