KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.

Article activity feed