Prophages are Infrequently Associated With Antibiotic Resistance in Pseudomonas aeruginosa Clinical Isolates

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Lysogenic bacteriophages can integrate their genome into the bacterial chromosome in the form of a prophage and can promote genetic transfer between bacterial strains in vitro . However, the contribution of lysogenic phages to the incidence of antimicrobial resistance (AMR) in clinical settings is poorly understood. Here, in a set of 186 clinical isolates of Pseudomonas aeruginosa collected from respiratory cultures from 82 patients with cystic fibrosis (CF), we evaluate the links between prophage counts and both genomic and phenotypic resistance to six anti-pseudomonal antibiotics: tobramycin, colistin, ciprofloxacin, meropenem, aztreonam, and piperacillin-tazobactam. We identified 239 different prophages in total. We find that P. aeruginosa isolates contain on average 3.06 +/- 1.84 (SD) predicted prophages. We find no significant association between the number of prophages per isolate and the minimum inhibitory concentration (MIC) for any of these antibiotics. We then investigate the relationship between particular prophages and AMR. We identify a single lysogenic phage associated with phenotypic resistance to the antibiotic tobramycin and, consistent with this association, we observe that AMR genes associated with resistance to tobramycin are more likely to be found when this prophage is present. However we find that they are not encoded directly on prophage sequences. Additionally, we identify a single prophage statistically associated with ciprofloxacin resistance but do not identify any genes associated with ciprofloxacin phenotypic resistance. These findings suggest that prophages are only infrequently associated with the AMR genes in clinical isolates of P. aeruginosa .

Importance

Antibiotic-resistant infections of Pseudomonas aeruginosa , a leading pathogen in patients with Cystic Fibrosis (CF) are a global health threat. While lysogenic bacteriophages are known to facilitate horizontal gene transfer, their role in promoting antibiotic resistance in clinical settings remains poorly understood. In our analysis of 186 clinical isolates of P. aeruginosa from CF patients, we find that prophage abundance does not predict phenotypic resistance to key antibiotics but that specific prophages are infrequently associated with tobramycin resistance genes. In addition, we do not find antimicrobial resistance (AMR) genes encoded directly on prophages. These results highlight that while phages can be associated with AMR, phage-mediated AMR transfer may be rare in clinical isolates and difficult to identify. This work is important for future efforts on mitigating AMR in Cystic Fibrosis and other vulnerable populations affected by Pseudomonas aeruginosa infections and advances our understanding of bacterial-phage dynamics in clinical infections.

Article activity feed