TAD hierarchy restricts poised LTR activation and loss of TAD hierarchy promotes LTR co-option in cancer

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.

Article activity feed