Evolutionary modes of wtf meiotic driver genes in Schizosaccharomyces pombe

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Killer meiotic drivers (KMDs) are a class of selfish genetic elements that defy Mendel's law and bias transmission in their favor by destroying meiotic progeny that do not carry them. How KMDs evolve is not well understood. In the fission yeast Schizosaccharomyces pombe , the largest gene family, known as the wtf genes, is a KMD family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe . Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf -gene-containing loci that have recently undergone gene conversion events and infer their pre-gene-conversion state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats (LTRs) of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe . Our findings enhance the understanding of the mechanisms influencing the evolution of this KMD gene family.

Article activity feed