Emergent Metabolic Niches for Marine Heterotrophs

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ocean microbial communities are made up of thousands of diverse taxa whose metabolic demands set the rates of both biomass production and degradation. Thus, these microscopic organisms play a critical role in ecosystem dynamics, global carbon cycling, and climate. While we have frameworks for relating phytoplankton diversity to rates of carbon fixation, our knowledge of how variations in heterotrophic microbial populations drive changes in carbon cycling is in its infancy. Here, we leverage global metagenomic datasets and metabolic models to identify a set of metabolic niches with distinct growth strategies. These groupings provide a simplifying framework for describing microbial communities in different oceanographic regions and for understanding how heterotrophic microbial populations function. This framework, predicated directly on metabolic capability rather than taxonomy, enables us to tractably link heterotrophic diversity directly to biogeochemical rates in large scale ecosystem models.

Article activity feed