Healthy human induced pluripotent stem cell-derived cardiomyocytes exhibit sex dimorphism even without the addition of hormones

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable cell type for studying human cardiac health and disease in vitro. However, it is not known whether hiPSC-CMs display sex dimorphism and therefore whether sex should be incorporated as a biological variable in in vitro studies that include this cell type. To date, the vast majority of studies that utilize hiPSC-CMs do not include both male and female sex nor stratify results based on sex because it is challenging to amass such a cohort of cells. Here, we generated 3 female and 3 male hiPSC lines from adult left ventricular cardiac fibroblasts as a resource for studying sex differences in in vitro cardiac models. We used this resource to generate hiPSC-CMs and maintained them in basal media without exogenous hormones. Functional assessment of CMs showed enhanced calcium handling in female-derived hiPSC-CMs relative to male. Bulk RNA sequencing revealed over 300 differentially expressed genes (DEGs) between male and female hiPSC-CMs. Gene ontology analysis of DEGs showed distinct differences in pathways related to cardiac pathology including cell-cell adhesion, metabolic processes, and response to ischemic stress. Differential expression of the sodium channel auxiliary unit SCN3B was found and validated through patch-clamp measurements of sodium currents, showing increased peak amplitude and window current in female hiPSC-CMs. These findings highlight the importance of considering sex as a variable when conducting studies to evaluate aspects of human cardiac health and disease related to CM function.

Article activity feed