Evaluating methods for B-cell clonal family assignment

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The adaptive immune response relies on a diverse repertoire of B-cell receptors, each of which is characterized by a distinct sequence resulting from VDJ-recombination. Upon binding to an antigen, B-cells undergo clonal expansion and in a process unique to B-cells the overall binding affinity of the repertoire is further enhanced by somatic hypermutations in the receptor sequence. For B-cell repertoires it is therefore particularly important to analyze the dynamics of clonal expansion and patterns of somatic hypermutations and thus it is necessary to group the sequences into distinct clones to determine the number and identity of expanding clonal families responding to an antigen. Multiple methods are currently used to identify clones from sequences, employing distinct approaches to the problem. Until now there has not been an extensive comparison of how well these methods perform under the same conditions. Furthermore, since this is fundamentally a phylogenetics problem, we speculated that the mPTP method, which delimits species based on an analysis of changes in the underlying process of diversification, might perform as well as or better than existing methods. Here we conducted extensive simulations of B-cell repertoires under a diverse set of conditions and studied errors in clonal assignment and in downstream ancestral state reconstruction. We demonstrated that SCOPer-H consistently yielded superior results across parameters. However, this approach relies on a good reference assembly for the germline immunoglobulin genes which is lacking for many species. Using mPTP had lower error rates than tailor-made immunogenetic methods and should therefore be considered by researchers studying antibody evolution in non-model organisms without a reference genome.

Article activity feed