Martini without the twist: Unveiling a mechanically correct microtubule through bottom-up coarse-graining in Martini 3

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Microtubules are essential cytoskeletal filaments involved in cell motility, division, and intracellular transport. These biomolecular assemblies can exhibit complex structural be-haviors influenced by various biophysical factors. However, simulating microtubule systems at the atomistic scale is challenging due to their large spatial scales. Here, we present an approach utilizing the Martini 3 Coarse-Grained (CG) model coupled with an appropriate elastic network to simulate microtubule-based systems accurately. By iteratively optimiz-ing the elastic network parameters, we matched the structural fluctuations of CG hetero-dimer building blocks to their atomistic counterparts. Our efforts culminated in a ∼ 200nm microtubule built with ∼ 6 million interaction-centers that could reproduce experimentally observed mechanical properties. Our aim is to employ these CG simulations to investigate specific biophysical phenomena at a microscopic level. These microscopic perspectives can provide valuable insights into the underlying mechanisms and contribute to our knowledge of microtubule-associated processes in cellular biology. With MARTINI 3 CG simulations, we can bridge the gap between computational efficiency and molecular detail, enabling in-vestigations into these biophysical processes over longer spatio-temporal scales with amino acid-level insights.

Article activity feed