Distinct mechanisms of non-autonomous UPR ER mediated by GABAergic, glutamatergic, and octopaminergic neurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The capacity to deal with stress declines during the aging process, and preservation of cellular stress responses is critical to healthy aging. The unfolded protein response of the endoplasmic reticulum (UPR ER ) is one such conserved mechanism, which is critical for the maintenance of several major functions of the ER during stress, including protein folding and lipid metabolism. Hyperactivation of the UPR ER by overexpression of the major transcription factor, xbp-1s , solely in neurons drives lifespan extension as neurons send a neurotransmitter-based signal to other tissue to activate UPR ER in a non-autonomous fashion. Previous work identified serotonergic and dopaminergic neurons in this signaling paradigm. To further expand our understanding of the neural circuitry that underlies the non-autonomous signaling of ER stress, we activated UPR ER solely in glutamatergic, octopaminergic, and GABAergic neurons in C. elegans and paired whole-body transcriptomic analysis with functional assays. We found that UPR ER -induced signals from glutamatergic neurons increased expression of canonical protein homeostasis pathways and octopaminergic neurons promoted pathogen response pathways, while minor, but statistically significant changes were observed in lipid metabolism-related genes with GABAergic UPR ER activation. These findings provide further evidence for the distinct role neuronal subtypes play in driving the diverse response to ER stress.

Article activity feed