Active vision in freely moving marmosets using head-mounted eye tracking

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Our understanding of how vision functions as primates actively navigate the real-world is remarkably sparse. As most data have been limited to chaired and typically head-restrained animals, the synergistic interactions of different motor actions/plans inherent to active sensing – e.g. eyes, head, posture, movement, etc. - on visual perception are largely unknown. To address this considerable gap in knowledge, we developed an innovative wireless head-mounted eye tracking system called CEREBRO for small mammals, such as marmoset monkeys. Our system performs C hair-free E ye- Re cording using B ackpack mounted mic RO controllers. Because eye illumination and environment lighting change continuously in natural contexts, we developed a segmentation artificial neural network to perform robust pupil tracking in these conditions. Leveraging this innovative system to investigate active vision, we demonstrate that although freely-moving marmosets exhibit frequent compensatory eye movements equivalent to other primates, including humans, the predictability of the visual system is enhanced when animals are freely-moving relative to when they are head-fixed. Moreover, despite increases in eye/head-motion during locomotion, gaze stabilization actually improved over periods when the monkeys were stationary. Rather than impair vision, the dynamics of gaze stabilization in freely-moving primates has been optimized over evolution to enable active sensing during natural exploration.

Article activity feed