Domain consolidation in Bacterial 50S assembly revealed by Anti-Sense Oligonucleotide Probing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Investigating the intricate and rapid folding kinetics of large RNA-protein complexes (RNPs), like the bacterial ribosome, remains a formidable challenge in structural biology. Previous genetic approaches to probe assembly have focused on modulating the expression of either r-proteins or assembly factors. Here, anti-sense oligonucleotides (ASOs) were used to disrupt native RNA/RNA and RNA/protein interactions, in order to generate novel folding intermediates. In an in vitro co-transcriptional assembly assay, 8 assembly inhibitor ASOs were identified. Using cryo-electron microscopy, 38 new intermediate structures were determined resulting from the specific inhibitions. In particular a novel intermediate class provided compelling evidence of independent rRNA domain folding before proper interdomain docking. Three PNAs targeting domain-I of 23S- rRNA further subdivided the previously identified assembly core into smaller blocks representing the earliest steps in assembly. The resulting assembly graph reveals template-directed RNA foldon docking and domain consolidation, which provides a hierarchical view of the RNP assembly process.

Article activity feed