Extruded alginate tubes with myogenic potential

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

BACKGROUND

There are currently no proven methods to reverse muscle loss in humans, which is caused by trauma (e.g., volumetric muscle loss, VML), genetic neuromuscular diseases (e.g., muscular dystrophies, MDs), and accelerated senescence (e.g., sarcopenia). Since muscle tissue is capable of regeneration through muscle satellite cells (MuSCs), the implantation of autologous (or other) donor MuSCs and MuSC-derived myoblasts into host muscles can promote donor-cell-derived myogenesis. Direct injection or implantation of MuSCs or MuSC-derived myoblasts into host muscles only promotes minimal donor-cell-derived myogenesis, whereas implantation of MuSCs/myoblasts along with associated muscle tissue (muscle fibers, extracellular matrix, neurovascular pathways, etc.) gives better results.

METHODS

We aim to leverage the benefits of constraining donor myogenic cells within a template that resembles muscle tissue. In this paper, we present a workflow for basic and translational studies aimed at promoting donor-cell-derived myogenesis to increase functional muscle mass in mice. Our workflow involves preparing a slurry of 10% sodium alginate mixed with myogenic cells in cell culture media, extruding the cell-containing slurry into 10% calcium lactate to form tubes, and implanting the cellularized alginate tubes into host muscle.

RESULTS

Our data suggest that, the extruded alginate tubes can tolerate a peak stress of 1892 ± 527 mN, that the elastic range is at ~75-125% strain beyond initial length, and that the Young’s modulus (stiffness) is 14.17 ± 1.68 %/mm 2 . Importantly, these mechanical properties render the alginate tubes suitable for a published technique known as minimally-invasive muscle embedding (MIME) that was developed by us to implant myogenic material into host muscle. MIME involves threading donor myogenic tissue into a needle track created within a host muscle. Cellularized alginate tubes implanted into the tibialis anterior muscle of previously euthanized mice had numerous hematoxylin-stained structures similar to nuclear staining, supporting the idea that our alginate tubes can support cell seeding. Alginate tubes that were seeded with MuSCs, incubated in MuSC/myoblast growth (i.e., proliferation) media for two days, incubated in myotube differentiation media for six days, and then minced and reseeded in new dishes, were able to promote in vitro myoblast outgrowth over several days.

DISCUSSION

This pilot study is limited in its translational scope because it was performed in vitro and with previously euthanized mice. Additional studies are needed to confirm that cellularized alginate tubes can promote the de novo development of donor-cell-derived muscle fibers, which can contribute to contractile force production.

CONCLUSION

Alginate tubes with MuSC/myoblasts can be generated by a simple extrusion method. The alginate tubes have sufficient mechanical strength to tolerate insertion into a host muscle, in a minimally-invasive manner, through a needle track. The cellularized alginate tubes demonstrate myogenic potential since they are capable of being maintained in culture conditions for several days, after which they can still facilitate myoblast outgrowth in a dish.

Article activity feed