Inositol pyrophosphate catabolism by three families of phosphatases controls plant growth and development

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular concentration must be tightly regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP 8 . PPIP5Ks contain additional phosphatase domains involved in PP-InsP catabolism. Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSPs) and NUDIX phosphatases (NUDTs) also hydrolyze PP-InsPs. Here we dissect the relative contributions of the three different phosphatase families to plant PP-InsP catabolism and nutrient signaling. We report the biochemical characterization of inositol pyrophosphate phosphatases from Arabidopsis and Marchantia polymorpha . Overexpression of different PFA-DSP and NUDT enzymes affects PP-InsP levels and leads to stunted growth phenotypes in Arabidopsis. nudt17/18/21 knock-out mutants have altered PP-InsP pools and gene expression patterns, but no apparent growth defects. In contrast, Marchantia polymorpha Mp pfa-dsp1 ge , Mp nudt1 ge and Mp vip1 ge mutants display severe growth and developmental phenotypes associated with changes in cellular PP-InsP levels. Analysis of Mp pfa-dsp1 ge and Mp vip1 ge supports a role for PP-InsPs in Marchantia phosphate signaling, and additional functions in nitrate homeostasis and cell wall biogenesis. Simultaneous removal of two phosphatase activities enhances the observed growth phenotypes. Taken together, PPIP5K, PFA-DSP and NUDT inositol pyrophosphate phosphatases play important roles in growth and development by collectively shaping plant PP-InsP pools.

Author summary

Organisms must maintain adequate levels of nutrients in their cells and tissues. One such nutrient is phosphorus, an essential building block of cell membranes, nucleic acids and energy metabolites. Plants take up phosphorus in the form of inorganic phosphate and require sufficient cellular phosphate levels to support their growth and development. It has been shown that plants and other eukaryotic organisms "measure" cellular phosphate levels using inositol pyrophosphate signaling molecules. The concentration of inositol pyrophosphates serves as a proxy for the cellular concentration of inorganic phosphate, and therefore inositol pyrophosphate synthesis and degradation must be tightly regulated. Here, we report that three different families of enzymes contribute to the degradation of inositol pyrophosphates in plants. The different phosphatases together shape cellular inositol pyrophosphate pools and thereby affect inorganic phosphate levels. Loss-of-function mutants of the different enzymes display additional defects in nitrate levels and cell wall architecture, suggesting that inositol pyrophosphates regulate cellular processes beyond inorganic phosphate homeostasis.

Article activity feed