Hierarchically Vascularized and Implantable Tissue Constructs created through Angiogenesis from Tissue-Engineered Vascular Grafts

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host’s circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues. The technique allows vascularization of a cell laden hydrogel through angiogenesis from a suturable tissue-engineered vascular graft (TEVG) constructed from electrospun polycaprolactone with macropores. The graft is surrounded by a layer of cell-laden gelatin-methacryloyl hydrogel. The constructs are suturable and possess mechanical properties like native vessels. Angiogenesis occurs through the pores in the graft, resulting in a hydrogel tcontaining an extensive vascular network that is connected to an implantable TEVG. The size of the engineered tissue and the degree of vascularization can be increased by adding multiple TEVGs into a single construct. The engineered tissue has the potential to be immediately perfused by the patient’s blood upon surgical anastomosis to host vessels, enabling survival of implanted cells. These findings provide a meaningful step to address the longstanding problem of fabricating suturable pre-vascularized tissues which could survive upon implantation in vivo .

Article activity feed