Novel 2D/3D Hybrid Organoid System for High-Throughput Drug Screening in iPSC Cardiomyocytes
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies for analyzing these parameters are expensive and resource-intensive. Methods: We have designed a novel 2D/3D hybrid organoid system that can harness optical imaging techniques to assess electromechanical properties and calcium dynamics across CMs in a high-throughput manner. We validated our methods using a doxorubicin-based system, as the drug has well-characterized cardiotoxic, pro-arrhythmic effects. Results: This novel hybrid system provides the functional benefit of 3D organoids while minimizing optical interference from multilayered cellular systems through our cell-culture techniques that propagate organoids outwards into 2D iPSC-CM sheets. The organoids recapitulate contractile forces that are more robust in 3D structures and connectivity, while 2D CMs facilitate analysis at an individual cellular level, which recreated numerous doxorubicin-induced electrophysiologic and propagation abnormalities. Conclusions: Thus, we have developed a novel 2D/3D hybrid organoid model that employs an integrated optical analysis platform to provide a reliable high-throughput method for studying cardiotoxicity, providing valuable data on calcium, contractility, and signal propagation.