Novel 2D/3D Hybrid Organoid System for High-Throughput Drug Screening in iPSC Cardiomyocytes

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies for analyzing these parameters are expensive and resource-intensive. Methods: We have designed a novel 2D/3D hybrid organoid system that can harness optical imaging techniques to assess electromechanical properties and calcium dynamics across CMs in a high-throughput manner. We validated our methods using a doxorubicin-based system, as the drug has well-characterized cardiotoxic, pro-arrhythmic effects. Results: This novel hybrid system provides the functional benefit of 3D organoids while minimizing optical interference from multilayered cellular systems through our cell-culture techniques that propagate organoids outwards into 2D iPSC-CM sheets. The organoids recapitulate contractile forces that are more robust in 3D structures and connectivity, while 2D CMs facilitate analysis at an individual cellular level, which recreated numerous doxorubicin-induced electrophysiologic and propagation abnormalities. Conclusions: Thus, we have developed a novel 2D/3D hybrid organoid model that employs an integrated optical analysis platform to provide a reliable high-throughput method for studying cardiotoxicity, providing valuable data on calcium, contractility, and signal propagation.

Article activity feed