Discovering Fragile Clades And Causal Sequences In Phylogenomics By Evolutionary Sparse Learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, infer organismal relationships with high statistical confidence. But, these relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.

Article activity feed