Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and emergence of recurrence. Here, we built a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass (T_Mass) and the SVZ (T_SVZ) of 15 GBM patients and 2 histologically normal SVZ (N_SVZ) samples as controls. We identified a mesenchymal signature in the T_SVZ of GBM patients: tumor cells from the T_SVZ relied on the ZEB1 regulatory network, whereas tumor cells in the T_Mass relied on the TEAD1 regulatory network. Moreover, the T_SVZ microenvironment was predominantly characterized by tumor-supportive microglia, which spatially co-exist and establish heterotypic interactions with tumor cells. Lastly, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays revealed that the IL-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways are therapeutic targets in the T_SVZ microenvironment. Our data provide insights into the biology of the SVZ in GBM patients and identify specific targets of this microenvironment.

Article activity feed