Pharmaco-resistant temporal lobe epilepsy gradually perturbs the cortex-wide excitation-inhibition balance

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with a mounting body of previous research focusing on elucidating its cellular manifestations. However, there are limited studies into E/I imbalance at macroscale and its microcircuit-level mechanisms and clinical associations. In our current work, we computed the Hurst exponent—a previously validated index of the E/I ratio—from resting-state fMRI time series, and simulated microcircuit parameters using biophysical computational models. We found a broad reduction in the Hurst exponent in pharmaco-resistant temporal lobe epilepsy (TLE), indicative of a shift towards more excitable network dynamics. Connectome decoders pointed to temporolimbic and frontocentral areas as plausible network epicenters of E/I imbalance. Computational simulations further revealed that enhancing cortical excitability in patients likely reflected atypical increases in recurrent connection strength of local neuronal ensembles. Moreover, mixed cross-sectional and longitudinal analyses revealed heightened E/I elevation in patients with longer disease duration, more frequent electroclinical seizures and inter-ictal epileptic spikes, and worse cognitive functioning. Replicated in an independent dataset, our work provides compelling in-vivo evidence of a macroscale shift in E/I balance in TLE patients that undergoes progressive changes and underpins cognitive impairments, potentially informing treatment strategies targeting E/I mechanisms.

Article activity feed