Facile detection of peptide-protein interactions using an electrophoretic crosslinking shift assay

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Protein-protein interactions with high specificity and low affinity are functionally important but are not comprehensively understood because they are difficult to identify. Particularly intriguing are the dynamic and specific interactions between folded protein domains and short unstructured peptides known as short linear motifs (SLiMs). Such domain-motif interactions (DMIs) are often difficult to identify and study because affinities are modest to weak. Here we describe “electrophoretic crosslinking shift assay” (ECSA), a simple in vitro approach that detects transient, low affinity interactions by covalently crosslinking a prey protein and a fluorescently labeled bait. We demonstrate this technique on the well characterized DMI between MAP kinases and unstructured D-motif peptide ligands. We show that ECSA detects sequence-specific micromolar interactions using less than a microgram of input prey protein per reaction, making it ideal for verifying candidate low-affinity DMIs of components that purify with low yield. We propose ECSA as an intermediate step in SLiM characterization that bridges the gap between high throughput techniques such as phage display and more resource-intensive biophysical and structural analysis.

Article activity feed