The cis-regulatory logic integrating spatial and temporal patterning in the vertebrate neural tube

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The vertebrate neural tube generates a large diversity of molecularly and functionally distinct neurons and glia from a small progenitor pool. While the role of spatial patterning in organising cell fate specification has been extensively studied, temporal patterning, which controls the timing of cell type generation, is equally important. Here we define a global temporal programme in the spinal cord. This governs cell fate choices by regulating chromatin accessibility in neural progenitors. Perturbation of this cis-regulatory programme affects sequential transitions in spinal cord progenitors and the identity of progeny. The temporal programme operates in parallel to spatial patterning, ensuring the timely availability of regulatory elements for spatial determinants to direct cell-type specific gene expression. These findings identify a chronotopic spatiotemporal integration strategy in which a global temporal chromatin programme determines the output of a spatial gene regulatory network resulting in the temporally and spatially ordered allocation of cell type identity.

Article activity feed