A dual-receptor model of serotonergic psychedelics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Serotonergic psychedelics have been identified as promising next-generation therapeutic agents in the treatment of mood and anxiety disorders. While their efficacy has been increasingly validated, the mechanism by which they exert a therapeutic effect is still debated. A popular theoretical account is that excessive 5-HT2a agonism disrupts cortical dynamics, relaxing the precision of maladaptive high-level beliefs and making them more malleable and open to revision. We extend this perspective by developing a simple energy-based model of cortical dynamics based on predictive processing which incorporates effects of neuromodulation. Using this model, we propose and simulate hypothetical computational mechanisms for both 5-HT2a and 5-HT1a agonism. Results from our model are able to account for a number of existing empirical observations concerning serotonergic psychedelics effects on cognition and affect. Using the findings of our model, we provide a theoretically-grounded hypothesis for the clinical success of LSD, psilocybin, and DMT, as well as identify the design space of biased 5-HT1a agonist psychedelics such as 5-MeO-DMT as potentially fruitful in the development of more effective and tolerable psychotherapeutic agents in the future.

Article activity feed