Sex differences in oxycodone-taking behaviors are linked to disruptions in reward-guided, decision-making functions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Problematic opioid use that emerges in a subset of individuals may be due to pre-existing disruptions in the biobehavioral mechanisms that regulate drug use. The identity of these mechanisms is not known, but emerging evidence suggests that suboptimal decision-making that is observable prior to drug use may contribute to the pathology of addiction and, notably, serve as a powerful phenotype for interrogating biologically based differences in opiate-taking behaviors. The current study investigated the relationship between decision-making phenotypes and opioid-taking behaviors in male and female Long Evans rats. Adaptive decision-making processes were assessed using a probabilistic reversal-learning task and oxycodone- (or vehicle, as a control) taking behaviors assessed for 32 days using a saccharin fading procedure that promoted dynamic intake of oxycodone. Tests of motivation, extinction, and reinstatement were also performed. Computational analyses of decision-making and opioid-taking behaviors revealed that attenuated reward-guided decision-making was associated with greater self-administration of oxycodone and addiction-relevant behaviors. Moreover, pre-existing impairments in reward-guided decision-making observed in female rats was associated with greater oxycodone use and addiction-relevant behaviors when compared to males. These results provide new insights into the biobehavioral mechanisms that regulate opiate-taking behaviors and offer a novel phenotypic approach for interrogating sex differences in addiction susceptibility and opioid use disorders.

Article activity feed