Evidence for negative selection in human primary fibroblasts to tolerate high somatic mutation loads upon treatment with multiple low doses of N-ethyl-N-nitrosourea

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

High-throughput sequencing at the single-cell and single-molecule level has shown that mutation rate is much higher in somatic cells than in the germline, with thousands of mutations accumulating with age in most human tissues. While there is now ample evidence that some of these mutations can clonally amplify and lead to disease, most notably cancer, the total burden of mutations a cell can tolerate without functional decline remains unknown. Here we addressed this question by exposing human primary fibroblasts multiple times to low doses of N-ethyl-N-nitrosourea (ENU) and quantitatively analyzing somatic mutation burden using single-cell whole genome sequencing. The results indicate that individual cells can sustain ∼60,000 single-nucleotide variants (SNVs) with only a slight adverse effect on growth rate. We found evidence for selection against potentially deleterious variants in gene coding regions as well as depletion of mutations in sequences associated with genetic pathways expressed in these human fibroblasts, most notably those relevant for maintaining basic cellular function and growth. However, no evidence of negative selection was found for variants in non-coding regions. We conclude that actively proliferating fibroblasts can tolerate very high levels of somatic mutations without major adverse effects on growth rate via negative selection against damaging coding mutations. Since most tissues in adult organisms have very limited capacity to select against mutations based on a growth disadvantage, these results suggest that a causal effect of somatic mutations in aging and disease cannot be ruled out.

Article activity feed