Multi-pronged analysis of pediatric low-grade glioma reveals a unique tumor microenvironment associated with BRAF alterations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pediatric low-grade gliomas (pLGG) comprise 35% of all brain tumors. Despite favorable survival, patients experience significant morbidity from disease and treatments. A deeper understanding of pLGG biology is essential to identify novel, more effective, and less toxic therapies. We utilized single cell RNA sequencing (scRNA-seq), spatial transcriptomics, and cytokine analyses to characterize and understand tumor and immune cell heterogeneity across pLGG. scRNA-seq revealed tumor and immune cells within the tumor microenvironment (TME). Tumor cell subsets revealed a developmental hierarchy with progenitor and mature cell populations. Immune cells included myeloid and lymphocytic cells. There was a significant difference between the prevalence of two major myeloid subclusters between pilocytic astrocytoma (PA) and ganglioglioma (GG). Bulk and single-cell cytokine analyses evaluated the immune cell signaling cascade with distinct immune phenotypes among tumor samples. KIAA1549-BRAF tumors appeared more immunogenic, secreting higher levels of immune cell activators and chemokines, compared to BRAF V600E tumors. Spatial transcriptomics revealed the differential gene expression of these chemokines and their location within the TME. A multi-pronged analysis of pLGG demonstrated the complexity of the pLGG TME and differences between genetic drivers that may influence their response to immunotherapy. Further investigation of immune cell infiltration and tumor-immune interactions is warranted.

Key points

  • There is a developmental hierarchy in neoplastic population comprising of both progenitor-like and mature cell types in both PA and GG.

  • A more immunogenic, immune activating myeloid population is present in PA compared to GG.

  • Functional analysis and spatial transcriptomics show higher levels of immune mobilizing chemokines in KIAA1549-BRAF fusion PA tumor samples compared to BRAF V600E GG samples.

Importance of the Study

While scRNA seq provides information on cellular heterogeneity within the tumor microenvironment (TME), it does not provide a complete picture of how these cells are interacting or where they are located. To expand on this, we used a three-pronged approach to better understand the biology of pediatric low-grade glioma (pLGG). By analyzing scRNA-seq, secreted cytokines and spatial orientation of cells within the TME, we strove to gain a more complete picture of the complex interplay between tumor and immune cells within pLGG. Our data revealed a complex heterogeneity in tumor and immune populations and identified an interesting difference in the immune phenotype among different subtypes.

Article activity feed