Prominent involvement of acetylcholine in shaping stable olfactory representation across the Drosophila brain

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Despite the vital role of neuromodulation in the neural system, the specific spatiotemporal dynamics of neuromodulators and their interactions with neuronal activities in vivo are still unclear, hampering our understanding of their information representation and functional contributions systemically. To address this problem, we employed two-photon synthetic aperture microscopy (2pSAM) to record long-term neuronal and neuromodulatory olfactory responses across the Drosophila brain at high speed. Our results revealed distinct response properties, global information propagation, functional connectivity, and odor identity representation among neuronal, cholinergic, and serotoninergic dynamics across multiple brain regions. We discovered the compensation between neuronal activity and cholinergic dynamics, both in the odor identity representation across the brain and the functional connectivity network structures of specific brain regions. Moreover, employing low-dimensional manifold and functional connectivity network analyses, we characterized the stable representation of cholinergic dynamics over a long term. Collectively, our unbiased and comprehensive investigation unveiled the prominent involvement of acetylcholine (ACh) in shaping olfactory representation across the brain, underscoring the inadequacy of solely considering neuronal activities when examining information representation of the brain.

Article activity feed