Essential genes for Haemophilus parainfluenzae survival and biofilm growth

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Haemophilus parainfluenzae ( Hp ) is a Gram-negative, pleomorphic rod, highly prevalent and abundant as a commensal in the human oral cavity, and an infrequent extraoral opportunistic pathogen. Hp occupies multiple niches in the oral cavity, including the tongue dorsum, keratinized gingiva, and the supragingival plaque biofilm. As a member of the HACEK group, Hp is also known to cause infective endocarditis. Additionally, case reports have identified Hp as the causative agent of meningitis, septic arthritis, chronic osteomyelitis, septicemia, and a variety of other infectious diseases. Little is known about how Hp interacts with its neighbors in the healthy biofilm nor about its mechanisms of pathogenesis as an extraoral opportunistic pathogen. To address these unknowns, we identified the essential genomes of two Hp strains and the conditionally essential genes for their growth in in vitro biofilms aerobically and anaerobically. Using transposon insertion sequencing (TnSeq) with a highly saturated mariner transposon library in two strains, the ATCC33392 type-strain ( Hp 392) and a commensal oral isolate EL1 ( Hp EL1), we show that the essential genome of Hp 392 and Hp EL1 is composed of 395 and 384 genes, respectively. The core essential genome, consisting of 341 essential genes conserved between both strains, was composed of genes associated with genetic information processing, carbohydrate, protein, and energy metabolism. We also identified conditionally essential genes for aerobic and anaerobic biofilm growth, which were associated with carbohydrate and energy metabolism in both strains of Hp . Additionally, RNAseq analysis determined that most genes upregulated during anaerobic growth are not essential for Hp 392 anaerobic biofilm survival. The completion of this library and analysis under these conditions gives us a foundational insight into the basic biology of H. parainfluenzae in differing oxygen conditions, similar to its in vivo oral habitat. Further, the creation of this library presents a valuable tool for further investigation into conditionally essential genes for an organism that lives in close contact with many microbial species in the human oral habitat.

Article activity feed