Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (−2160 to +1800 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity, nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We observe that at the timescales of traditional single molecule tracking experiments, motion appears sub-diffusive for all particle sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous diffusion on short time scales and the apparent sub-diffusion arises from geometrical confinement within the nucleoid and by the cell boundary.

Article activity feed