Nonuniform scaling of synaptic inhibition in the dorsolateral geniculate nucleus in a mouse model of glaucoma

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feed-forward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the GABA A -α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling indicated this was the result of an approximately 1.4-fold increase in GABA receptor number at post-synaptic inhibitory synapses, although several pieces of evidence strongly indicate a non-uniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP.

Significance Statement:

Elevated eye pressure in glaucoma leads to loss of retinal outputs to the dorsolateral geniculate nucleus (dLGN), which is critical for relaying information to the cortex for conscious vision. Alterations in neuronal activity, as could arise from excitatory synapse loss, can trigger homeostatic adaptations to synaptic function that attempt to maintain activity within a meaningful dynamic range, although whether this occurs uniformly at all synapses within a given neuron or is a non-uniform process is debated. Here, using a mouse model of glaucoma, we show that dLGN inhibitory synapses undergo non-uniform upregulation due to addition of post-synaptic GABA receptors. This is likely to be a neuronal adaptation to glaucomatous pathology in an important sub-cortical visual center.

Article activity feed