Challenges in quantifying functional redundancy and selection in microbial communities

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Microbiomes can exhibit large variations in species abundances but high reproducibility in abundances of functional units, an observation often considered evidence for functional redundancy. Based on such reduction in functional variability, selection is hypothesized to act on functional units in these ecosystems. However, the link between functional redundancy and selection remains unclear. Here, we show that reduction in functional variability does not always imply selection on functional profiles. We propose empirical null models to account for the confounding effects of statistical averaging and bias toward environment-independent beneficial functions. We apply our models to existing data sets, and find that the abundances of metabolic groups within microbial communities from bromeliad foliage do not exhibit any evidence of the previously hypothesized functional selection. By contrast, communities of soil bacteria or human gut commensals grown in vitro are selected for metabolic capabilities. By separating the effects of averaging and functional bias on functional variability, we find that the appearance of functional selection in gut microbiome samples from the Human Microbiome Project is artifactual, and that there is no evidence of selection for any molecular function represented by KEGG orthology. These concepts articulate a basic framework for quantifying functional redundancy and selection, advancing our understanding of the mapping between microbiome taxonomy and function.

Article activity feed