Capture of Human Neuromesodermal and Posterior Neural Tube Axial Stem Cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The spinal cord, nerves, and skeletal muscles arise from neuromesodermal progenitors (NMPs). We have developed a growth-factor screening strategy, utilizing ES and iPS cells, facilitating the indefinite self-renewal of two types of human axial stem cells (AxSCs), closely resembling mouse NMPs (NM-AxSCs) and posterior neural tube progenitors (N-AxSCs). Under specific regimens— Wnt/CHIR99021, FGF2, and TGF-β inhibitor SB431542 (CFS) and excluding FGF2 (CS), respectively—these AxSCs self-renew and sustain telomeres. Single cell transcriptomics and proteomics have revealed expression of posterior growth-zone and dorsoventral neural tube markers in NM-AxSCs, and correspondingly, differentiation to a wide spectrum of neural tube neurons and myocytes. N-AxSCs rapidly matured into dorsal sensory subsets and neural crest. Crucially, neither AxSC type produces teratomas, and analogous mouse NM-AxSCs integrated successfully into the neural tube and somites. Capturing of AxSCs from patient and GMP ES / iPS cells without transgenesis unveils ontogeny and promises modeling and therapy in neuropathies.

Article activity feed