Self-quenched fluorophore-DNA labels for super-resolution fluorescence microscopy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Protein labeling through transient and repetitive hybridization of short, fluorophore-labeled DNA oligonucleotides has become widely applied in various optical super-resolution microscopy methods. The main advantages are multi-target imaging and molecular quantification. A challenge is the high background signal originating from the presence of unbound fluorophore-DNA labels in solution. Here, we report self-quenching of fluorophore dimers conjugated to DNA oligonucleotides as a general concept to reduce the fluorescence background. Upon hybridization, the fluorescence signal of both fluorophores is fully restored. Here, we expand the toolbox of fluorophores suitable for self-quenching and report their spectra and hybridization equilibria. We apply self-quenched fluorophore-DNA labels to stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM) and report improved imaging performances.

Article activity feed