Analysis of Protein Cysteine Acylation Using a Modified Suspension Trap (Acyl-Trap)

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Proteins undergo reversible S -acylation via a thioester linkage in vivo. S -palmitoylation, modification by C16:0 fatty acid, is a common S -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised Acyl-Trap, a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S -acyl enrichment. We show that the method is compatible with protein-level detection of S -acylated proteins (e.g. H-Ras) as well as S -acyl site identification and quantification using on-trap isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S -acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

Article activity feed