Single cell approaches define forebrain neural stem cell niches and identify microglial ligands that enhance precursor-mediated remyelination

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Here we used single cell RNA-sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We define the dorsal and lateral ventricular-subventricular zones (V-SVZ) as two distinct neighborhoods, and show that following white matter injury, dorsal NSCs are locally activated to make oligodendrocytes for remyelination. This activation is coincident with a robust increase in transcriptionally-distinct microglia in the dorsal V-SVZ niche. We modeled ligand-receptor interactions within this changing niche and identified two remyelination-associated microglial ligands, IGF1 and OSM, that promote precursor proliferation and oligodendrogenesis in culture. Infusion of either ligand into the lateral ventricles also enhanced oligodendrogenesis, even in the lateral V-SVZ, where NSCs normally make neuroblasts. These data support a model where gliogenesis versus neurogenesis is determined by the local NSC neighborhood and where injury-induced niche alterations promote NSC activation, local oligodendrogenesis, and likely contribute to myelin repair.

Article activity feed