Causal Interactions between Phase- and Amplitude-Coupling in Cortical Networks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Phase coherence and amplitude correlations across brain regions are two main mechanisms of connectivity that govern brain dynamics at multiple scales. However, despite the increasing evidence that associates these mechanisms with brain functions and cognitive processes, the relationship between these different coupling modes is not well understood. Here, we study the causal relation between both types of functional coupling across multiple cortical areas. While most of the studies adopt a definition based on pairs of electrodes or regions of interest, we here employ a multichannel approach that provides us with a time-resolved definition of phase and amplitude coupling parameters. Using data recorded with a multichannel µECoG array from the ferret brain, we found that the transmission of information between both modes can be unidirectional or bidirectional, depending on the frequency band of the underlying signal. These results were reproduced in magnetoencephalography (MEG) data recorded during resting from the human brain. We show that this transmission of information occurs in a model of coupled oscillators and may represent a generic feature of a dynamical system. Together, our findings open the possibility of a general mechanism that may govern multi-scale interactions in brain dynamics.

Article activity feed