Incretin hormones and pharmacomimetics rapidly inhibit AgRP neuron activity to suppress appetite

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Analogs of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) have become mainstays of obesity and diabetes management. However, both the physiologic role of incretin hormones in the control of appetite and the pharmacologic mechanisms by which incretin-mimetic drugs suppress caloric intake remain incompletely understood. Hunger-promoting AgRP-expressing neurons are an important hypothalamic population that regulates food intake. Therefore, we set out to determine how incretins analogs affect their activity in vivo . Using fiber photometry, we observed that both GIP receptor (GIPR) and GLP-1 receptor (GLP-1R) agonism acutely inhibit AgRP neuron activity in fasted mice and reduce the response of AgRP neurons to food. Moreover, optogenetic stimulation of AgRP neurons partially attenuated incretin-induced feeding suppression, suggesting that AgRP neuron inhibition is necessary for the full appetite-suppressing effects of incretin-based therapeutics. Finally, we found that GIP but not GLP-1 is necessary for nutrient-mediated AgRP neuron inhibition, representing a novel physiologic role for GIP in maintaining energy balance. Taken together, these findings reveal neural mechanisms underlying the efficacy of incretin-mimetic obesity therapies. Understanding these drugs’ mechanisms of action is crucial for the development of next-generation obesity pharmacotherapies with an improved therapeutic profile.

Article activity feed